Antiproton Stacking Process

Debuncher Bunch Rotation

- > Exchange
 - Large Momentum spread of 4% (360 MeV)
 - Short bunches < 1.5 nS (95%)
- > For
 - Small momentum spread of 0.4% (36 MeV)
 - Coasting beam
- A short bunch lengths on target give small momentum spreads after Debuncher bunch rotation

Antiproton Stacking Process

Debuncher Cooling

- > System Configuration
 - Liquid Helium front end (T_{eff}=30K)
 - Bandwidth = 4-8 GHz
 Subdivided into 4 bands
 - Available kicker power
 - 2400 Watts/ plane (transverse)
 - 4800 Watts (momentum)
- > Cooling Rate Specs.
 - Momentum: 36 MeV to 6 MeV in 1.9 Seconds
 - Transverse: 35π -mm-mrad to 5π -mm-mrad (95% un-normalized) in 1.9 seconds

Antiproton Stacking Process

Accumulator Stacktail Cooling

- > Process
 - Beam is injected onto the Injection Orbit
 - Beam is
 - Bunched with RF
 - Moved with RF to the Stacking Orbit
 - Debunched on Stacking orbit
 - Stacktail pushes and compresses beam to the Core orbit
 - Core Momentum system gathers beam from the Stacktail
 - Accumulator Transverse
 Core Cooling system cools
 the beam transversely in
 the Stacktail and Core

Stack Rate vs Stack Size

Why is the Cycle Time so Slow?

Accumulator Longitudinal Spectrum

- Beam must be cleared off the Stacktail deposition orbit before next beam pulse.
 - > The more gain the Stacktail has, the faster the pulse will move.
 - > The Stacktail gain is limited by system instabilities between the core beam and the injected beam
 - > As the stack gets larger
 - The instability feedback path grows stronger
 - The gain of the Stacktail must be turned down to compensate
 - The cycle time must increase for the lower Stacktail gain

Why is the Cycle Time so Slow?

- For a given Stacktail gain, the larger the momentum spread of the injected pulse, the longer it takes to clear the pulse from the Stacktail Deposition orbit.
 - > The momentum spread coming from the Debuncher is too large.
 - Bunch length on target
 - Debuncher Cooling rate
 - Debuncher asymptotic momentum

Debuncher Momentum Cooling

FY03-FY04 Plan

- Debuncher Notch Filter Equalizers Upgrade
- DRF2 barrier bucket noise reduction
- Stacktail Compensation legs
- Stacktail Notch Filter Upgrade
- Stacktail Phase Intercept Adjustments

Future Stacking Plans

- Need "Infinite sink" of cooling the core
 - > no 1/N effect
- Electron Cooling
 - > Opposite of Stochastic cooling
 - Works well for large stacks
 - Works well for small emittances

Electron Cooling

Recycler Electron Cooling

- Every $\frac{1}{2}$ hour an injected batch of $22x10^{10}pbars$ in 10 eV-Sec and 1.0 $\pi\text{-mm-mrad}$ phase space is injected into the Recycler
 - Transfers between the Accumulator and the Recycler
 - Are done on "event"
 - » ~instantaneously
 - » No more mini-shot setup
 - A 50% dilution is assumed to occur on each transfer
 - » 15 eV-Sec and 1.5 π -mm-mrad phase space
 - Transverse stochastic pre-cooling of the injected batch
 - To bring the transverse emittance of the injected batch within the reach of the electron cooling
 - The injected batch is kept separate from the main "core" by barrier buckets
 - Transverse stochastic cooling systems are "gain gated"
 - » Low density injected batch fast stochastic cooling
 - » High density core slow stochastic cooling

Electron Cooling

Recycler Electron Cooling

- Fivery $\frac{1}{2}$ hour, the previous injected batch is merged into the core with barrier bucket manipulations to make room for the new injected batch
- > The Recycler Core
 - Is cooled mainly with electron cooling in all 3 planes
 - 55eV-Sec/hour
 - 0.24π -mm-mrad/hour
 - Weak transverse stochastic cooling for high amplitude particles
 - Intra-beam scattering (IBS) is "shut-off"
 - Recycler
 - » operates below transition
 - » has low dispersion
 - » has smooth lattice functions
 - The Core is squeezed with barrier buckets so that it occupies only 20% of the machine circumference
 - The transverse emittance is cooled to less than $0.3\pi\text{-mm-mrad}$ (95% un-normalized) so that the beam temperature in all 3 planes is equal

Electron Cooling

- What happens if the Recycler never "converges"?
- Install Electron Cooling in the Accumulator AP50
 Pit
 - > A50 Straight Section was used for the E835 detector
 - Straight section no longer used for anything
 - Large pit beneath beam pipe (~4ft below floor level)
 - Counting room no longer used
 - AP50 Drop hatch available
 - > 15 meters of straight section between Q1's
 - · Zero dispersion
 - Lattice functions could be modified with Q1,Q2,Q3 settings

Accumulator Electron Cooling

AP50 Pit

Accumulator Electron Cooling

- Accumulator Aperture would be Divided into 3 Regions
 - \triangleright 208 mm required for 10π -mm-mrad Aperture

Accumulator Electron Cooling

Advantadges

- > Machine circumference
 - 7x smaller than Recycler
- > No Rapid transfers
 - No beam loss
 - No transverse emittance dilution
 - · No longitudinal emittance dilution
 - No waiting for transfer
- Electron cooler can be placed closer to ring
 - 8 GeV beam only in Accumulator
 - Shielding requirements much less
- > Accelerator Performance
 - Vacuum
 - Ring Size
 - Equipment
 - » Pumping speed
 - » Bakeout system
 - Aperture
 - No Main Injector ramps to contend with

Disadvantadges

- Stacktail Betatron cooling
 - Pickup design is tricky
- Cooling section length
 - Recycler -> 20 meters
 - Accumulator > 12 meters
- Available longitudinal phase space
 - Drag force of electron cooling on Stacktail beam